..‘

{=fing

Fing Device Recognition

Development Toolkit Documentation

Last updated: November 2018

Version: 3.2

xfing

1. Introduction 2
How it Works 2

2. Integrate Fing Development Toolkit into your native app 3
Integration with an iOS app 3
Integration within an Android app 3

3. API Specification 5
Asynchronous design 5
Error Handling 5

License Key validation 6
Network Info 7
Network Scan 8
Stopping a Scan 9

Scan Options 9

4. Data structure of a Fing scan 10
Summary dataset of the network 10
Extended dataset of the network 11
Service Provider dataset 12
Network node base dataset 13
Network node extended dataset for NetBIOS 14
Network node extended dataset for Bonjour 14
Network node extended dataset for UPnP 14
Network node extended dataset for SNMP 15
Network node extended dataset for DHCP 15
The type of devices that Fing recognises 16

5. Integrate Fing using Apache Cordova 16

Fing Device Recognition | Development Toolkit Documentation 1

2fing

1. Introduction

Device recognition technology is at the core of Fing App - the network scanning and
troubleshooting tool downloaded over 35 million times and scanning millions of networks
around the world every day. Fing’s Device Recognition technology identifies billions of
connected devices quickly and accurately and provides valuable insights about networks
and connected devices. Development teams can save substantial time and resources by
implementing Fing technology in applications for the connected world.

Fing’s Development Toolkit consists of a Software Development Kit (SDK) for mobile
apps and embedded devices that allow developers access to Fing’s proprietary machine
learning expertise and unrivaled device identification. The SDK analyses a device’s Wi-Fi
network and emits details about the connected devices and Fing’s cloud service identifies
specific device properties including make, model, category, operating system and
version. Access a snapshot of currently connected and previously connected devices for
a given network.

The key benefits for developers are:

How it Works
(YOUR APP \

Fing’s proprietary technology leverages an
ever-expanding crowdsourced knowledge to
understand discovery protocols including Bonjour
(Multicast-DNS) queries, UPnP queries, SNMP
requests, DHCP monitoring and NetBIOS queries.

Fing’s Device Recognition technology analyses and —
provides the best match data for each device. Fing’s

catalogue currently has more than one hundred types ~ 2F/ICE RECOGNITION

of device ranging from tablets to surveillance Make, model & category
cameras. Device types are grouped into eight \'\
categories - mobile, entertainment, home & office,
network, server, home automation, surveillance,
engineering. In addition Fing provides, in JSON text

Device
Enrichment

FING CLOUD

xfing

format, the full set of network details and analysis for each network protocol the devices
comply with.

2. Integrate Fing Development Toolkit into your
native app

Using Fing’s developer tools is simple and straightforward on iOS and Android. Create an
app, access your unique Fing License Key and simply add the relevant frameworks for
Fing integration. You can then initialize Fing and start a network scan.

Integration with an iOS app

Fing SDK is available as an Objective-C Framework library, suitable to be used with the
standard development tools (Xcode) and to be published on the official Apple Store. As a
framework, it may also be used by applications written in Swift language. It is compatible
with Apple iOS 9.x and beyond.

Fing SDK requires the following items to be added in “Linked Frameworks and Libraries”
in your Xcode project.

libresolv.9.tdb Foundation.framework
libsqllite3.thd CFNetwork . framework
SystemConfiguration.framework CoreTelephony.framework

Security.framework

The FingKit framework itself shall be added as “Embedded Binaries” as well; Xcode
automatically includes the framework in the final package. To import and use the
functionalities of the FingKit modules, you shall simply import the module main header.

#import <FingKit/FingKit.h>

Functionalities are accessed via the main singleton class FingScanner.

Integration within an Android app

The SDK is available as an AAR (Android Archive) library, suitable to be used with the
standard development tools (Android Studio) and to be published on the official Play
Store. As a framework, it may also be used by applications written in Kotlin language. It is

Fing Device Recognition | Development Toolkit Documentation 3

xfing

compatible with Android 4.4 and above. The following dependencies should be added in
your Gradle-based or Maven-based project.

Group Name Version
com.android.support appcompat-v7 27.1.1
com.google.android.gms play-services-analytics 16.0.5
com.google.protobuf protobuf-java 2.6.1
org.snmp4j snmp4j 2.5.0

The archive fing-kit.aar should be placed locally in a folder placed at the same level
of the Android app source code, (e.g. if your source code is in <root/app/src=>, place
the library in <root/app/1libs>) and it will be added as transitive compilation item in
your build system.

Android Studio automatically includes the framework in the final package. Below is an
excerpt of a Gradle build module that includes the library in the build system.

Android (Gradle)

allprojects {
repositories {
jcenter()
flatDir
dirs 'libs’
}

google()
¥

dependencies {
compile(name:'fing-kit', ext:'aar') {
transitive=true
}

implementation 'com.android.support:appcompat-v7:27.1.1"'
implementation 'com.google.android.gms:play-services-analytics:16.0.5'"
implementation 'com.google.protobuf:protobuf-java:2.6.1"'
implementation 'org.snmp4j:snmp4j:2.5.0'

The functionalities are accessed via the main singleton class FingScanner.

Fing Device Recognition | Development Toolkit Documentation 4

xfing

3. API Specification

Asynchronous design

Fing SDK operates asynchronously, to ensure your App is never blocked during each
operation. A callback block is used to deliver the result of an operation, or the error
object in case the operation could not be completed. All callback methods are invoked in
the main thread on iOS and Android.

iOS (Objective-C)

typedef void (AFingResultCallback)
(NSString *_Nullable result, NSError *_Nullable error);

Android (Java)

public interface FingResultCallback {
void handle(String result, Exception error);
}

Parameter iOS/Android Type Description

Result NSString * / The result coming from Fing. It may be nil/null if there is no
String result or if an error occurred. The result is usually in JSON
format, but in general it depends on the type of operation

Error NSError * / An error descriptor, in case the operation may not be
Exception completed.

If successful, the completion callback result string contains a JSON-formatted result and
a nil/null error.

The execution of the scanning request must be initiated from main thread in foreground
execution on both platforms; executing the activity from a scheduled background task on
Android or in the background mode on iOS may lead to inconsistent states and errors.

Error Handling

On Android, errors are represented as Exception objects passed as parameters. On iOS,
the completion callback may return one of the following error codes in the NSError
object if the attempt to validate the key failed.

Error Code Description
-100 The provided key is not valid
-101 The service replied, but could not validate the key

Fing Device Recognition | Development Toolkit Documentation 5

xfing

-102 The operation timed out

-300 Scan operation failed

License Key validation

To enable the functionalities delivered by the Fing SDK, you must first obtain a License
Key from sales@fing.com and validate it. The validation requires access to the internet,
and it shall be executed at every application session in order to activate the features; a
missing or failed validation disables the features of the Fing SDK.

iOS (Objective-C)

-(void) validatelLicenseKey:(NSString *) key
withToken:(NSString *) token
completion:(nullable FingResultCallback) completion;

Android (Java)

public void validatelLicenseKey(String key,
String token,
FingResultCallback completion);

The method accepts the following list of parameters:

Parameter iOS/Android Type Description
Key NSString * / The unique license key that enable the usage of Fing
String APIL. The key is used to identify the owner, assess the
. services that are enabled for a given license and to
(Required) ensure the usage of the functionalities within the

agreed terms.

Token NSString * / A token generated by your App or by your backend
String services, that will be sent back to your remote services
through a webhook. The purpose of the optional token
(Optional, max 512 is to allow you to recognise, if needed, the activation of
characters) a session using your license key.

Completion FingResultCallback A callback block that is invoked when the validation

terminates.
(Optional

If successful, the callback contains a JSON-formatted result as described in the following
table,and anil/null error.

Key Value Example

kitLicenseld Your license key Will be the same value
passed as parameter

Fing Device Recognition | Development Toolkit Documentation 6

2fing

kitCustomerid Your unique customer identifier, assigned on ACME
sign up. Usually, it’s your company or App name

expiryDate The time at which the provided key expiresanda 2016/11/23 02:00:07
new key or new validation shall be performed
state The state of the license. It may be one of: Ok
Ok
Suspended
Revoked
grantDiscovery A Boolean value indicating if the network true

discovery feature is granted by your license

grantEnrichment A Boolean value indicating if a Fing Service true
enrichment is enabled. Enrichment provides
additional results on top the local scan, such as
device type recognition.

grantAccount Deprecated feature. A Boolean value indicating true
if the ability to attach the App to an account is
granted by your license.

usageToken A token assigned to the running device for the ABC123
present month

usageCounted A Boolean value indicating if this validation was true
the firsFing t validation of the licensing period

If the validation could not be performed or fails, a description of the error is reported in
the NSError object.

An example of the JSON result is reported below.

{
"kitLicenseId":”"ABC123",
"kitCustomerId":"ACME”,
“expiryDate”:"2016/12/30 00:00:00",
“state” :"0k”,
“grantDiscovery”: “true”,
“grantEnrichment”: “true”,
“grantAccount”: “false”,
“usageToken”: “ABC123",
“usageCounted”: “false”

}

A failure to validate the key is reported via an NSError. Every error in the validation
process disables all functionalities.

xfing

Network Info

Fing allows to conveniently retrieve network details from the Wi-Fi the device is
connected to. The network details may be retrieved through the following method:

iOS (Objective-C)

-(void) networkInfo:(nullable FingResultCallback) completion;

Android (Java)

public void networkInfo(FingResultCallback completion);

If successful, the callback contains a JSON-formatted result as described in the following
table,andanil/null error.

Key Value Example
address The base IP address of the network 192.168.0.0
netmask The netmask expressed as CIDR notation. It 24

represents the number of bits that make up the
subnet part, and consequently the remaining
bits identify the host part

bssid The BSSID, that is the MAC Address of the AA:BB:CC:00:01:02
Access Point the device is connected to at the
moment

ssid The name of the network, as assigned by the My Network

network administrator

gatewayAddress The IP Address of the network gateway, if 192.168.0.1
available
dnsAddress The IP Address of the network DNS, if available 192.168.0.1

hasConnectivity Discriminates if the current connection with the true
server has network connectivity

Network Scan

This functionality is accessed via a single method that performs the scan and enrichment
of data, if enabled. The scan is integrated with the Fing Device Recognition Service,
based on the features and services enabled on your API key.

iOS (Objective-C)

-(void) networkScan:(nullable FingScanOptions *) options
completion:(nullable FingResultCallback) completion;
-(void) networkScanStop;

Fing Device Recognition | Development Toolkit Documentation 8

xfing

Android (Java)

public void networkScan(FingScanOptions options,
FingResultCallback completion);
public void networkScanStop();

Scan progress is delivered asynchronously to a completion handler, so that hosting Apps
can be informed and display the progress of the execution.

The method “scan” accepts the following list of parameters:

Parameter iOS/Android Type Description
options FingScanOptions =* The set of options to tune the network scan procedure.
(Optional) See Scan Options for details

completion FingResultCallback A callback block that is invoked when the validation
terminates.
(Optional) The validation may check both locally and remotely the
given key, and report the result or an empty result with
an error.

See section 4 for details.

Stopping a Scan

The scan can be stopped at any time using the corresponding method networkScanStop;
if the scan was not running at that time, nothing is performed. After the stop operation is
requested, all pending updates and the enrichment update will be delivered to scan
completion handler.

Scan Options

You may enable and tune the scan process through a set of Options. The following scan
options may be specified through the appropriate FingScanOptions object:

Option iOS/Android Type Description
reverseDnsEnabled Bool/boolean Enables Reverse DNS
upnpEnabled Bool/boolean Enables UPnP scan
bonjourEnabled Bool/boolean Enables Bonjour scan
netbiosEnabled Bool/boolean Enables NetBIOS scan
snmpEnabled Bool/boolean Enables SNMP scan

Fing Device Recognition | Development Toolkit Documentation 9

xfing

maxNetworkSize NSInteger / Imposes a maximum network
integer size
resultLevelScanInProgress FingScanResultlLevel The level of results that shall be
returned while the scan is in
progress.
One of

FingScanResultNone,
FingScanResultSummary,
FingScanResultFull.

The default is value is
FingScanResultNone.

resultLevelScanCompleted FingScanResultlLevel The level of results that shall be
returned when the scan is
complete.

The default is value is
FingScanResultSummary.

resultLevelScanEnriched FingScanResultlLevel The level of results that shall be
returned when the scan is
enriched.

The default value is
FingScanResultFull

outputFormat NSString * / The output format, expressed as
String MIME type.

Currently only “application/json”
is supported.

Please note that scan options are supported only on iOS at the moment.

4. Data structure of a Fing scan

Regardless of the platform being used, the Fing returns the same set of results in the
requested format. At the moment, JSON format is supported, which allow an easy
integration with any kind of hosting app or process. Since iOS 11, MAC addresses may
not be retrieved for the local device and the scanned device, and are therefore not
reported in the JSON result.

Summary dataset of the network

For the current network, Fing will provide a JSON data structure describing the network
details and analysed properties. This is the set of details returned at Summary level.

Fing Device Recognition | Development Toolkit Documentation 10

Key

nodes_count

nodes_up_count

nodes_down_count

last_scan_timestamp
network_short_address

progress

enriched

completed

Value

The amount of nodes found in the
network

The amount of nodes found online in the
network.

The state of network devices is preserved
locally by the system and merged with the
latest scan

The amount of nodes found offline in the
network.

The state of network devices is preserved
locally by the system and merged with the
latest scan

The time of the last scan
The network address, in CIDR format

The progress of the scan, in percentage
from O to 100

A boolean flag discriminating if this scan
has been enriched by Fing Device
Recognition service

A boolean flag discriminating if this scan
completes the scan progress. Depending
on the license and enrichment, the last
scan report may come from as as the last
operation of the scan or as the last
operation after the scan has completed

Extended dataset of the network

2fing

Example

12

10

2016/11/23 02:00:07
192.168.0.1/24

80

true

false

This is the set of details returned at Full level, in addition to all the details provided at
Summary level. This structure is contained in the “network” JSON key.

Key

last _change_timestamp
gateway_ip_address
gateway_mac_address
address

address_type

dns_address

Value

The time of the last change

The IP address of the gateway
The MAC address of the gateway
The network address

IPv4 or IPv6

The IP address of the DNS

Example

2016/11/23 02:00:07
192.168.0.1
AB:00:DD:FF:01:CC
192.16.0.0

IPv4

192.168.0.1

mask_prefix_length

original_prefix_length

hame
bssid_list
time_zone

The netmask length applied by the scan
engine, in bits

The netmask length as defined in the
network, in bits

The network name from the Wi-Fi SSID, if
any

A list of the access points BSSID

The time zone of the scanning device

Service Provider dataset

= fing
24
22
My Network
[“AB:00:DD:FF:01:CC”,

“AB:00:DD:FF:01:CD”]

Europe/London

If internet connection is available, the scan reports also additional details on the ISP
connection and location. Some of these details may not be available, depending on the

user’s connection.

Key

address

host_name
country_code
country_code_3
country_name
country_region_code
country_region
country_city

country_postal_code

latitude

longitude

isp_name

organization

net_speed

Value

The public IP address

The public host name

The 2-letters country code
The 3-letters country code
The name of the country
The region code

The region name

The city name

The latitude of the ISP point in decimal
degrees

The longitude of the ISP point in decimal
degrees

The time zone of the scanning device

The name of the Internet Service
Provider

The name of the organization providing
Internet Access

The nominal network speed

Example
44.211.2.94
host.viacom.com
UK

ITA

United States
LAZ

Tuscany
Washington

W10 5BN

20.23123

-82.22938

AT&T

Your Local Building

40 Mbs

Network node base dataset

2fing

For each identified device, Fing will provide a data structure describing the network
details and analyzed properties.

Key

best_name

best_type

best_category

best_make

best_model

best_os

mac_address

vendor

ip_addresses

host_name

state

Value

The best name of the device, evaluated
from the names returned from the
various protocols it replies to

A single type identifying its major role.
It’s intended to be as brandless as
possible

A single major category the device falls in

The name of the makers/vendor of the
device. It may overlap with the
manufacturer, but it may be also
different in case the network interface
(ETH, WIFI) is different.

The human-readable name of the model

The name of the Operating system, when
applicable

The MAC Address of the device that is
currently using to connect to the network

The name of the company that is
officially manufacturing the network
interface (ETH or WIFI). Names are
reviewed and optimized to be consistent

The list of IP address assigned to the
device in the current network. It may be
multiple if the element is a network
bridge or if it’s temporarily being
assigned multiple addresses

The DNS name of the device
Discriminates if the device is connected

to the network or not. Can be “UP” or
“DOWN”

Example

“HP 2832”, “Marco’s
iPhone”

“Laptop”, “Mobile”,
“Photo Camera”.

“Entertainment” for a
TV, “Personal” for a
laptop, “IT” for a server

“Apple”, “Belkin” (but
not “Foxconn”)

“iPhone 5S”, “P9”

“i0S 9.3.2”, “Android
5.0.17, “Windows 7”.

“06:5¢:89:c9:e7:d1”

“Samsung”, “Apple”,
“Lenovo” for major
brands, but also
“Foxconn” for
manufacturers that
registered their
components directly

“172.28.0.14”

“mydevice.thissite.com”

“U P”

first_seen_timestamp
discovered in this network

last_change_timestamp
state (UP/DOWN)

The timestamp the device was first

The timestamp the device changed the

. "N M
2fing
“2016-04-28 11:34:45”

“2016-04-28 11:34:45”

Network node extended dataset for NetBIOS

In addition to general-purpose properties, Fing exports for NetBIOS the following JSON

structure, contained in the “netbios” JSON key.

Property Description

name

The NetBIOS name is used to uniquely

Example

“MACBOOKPRO”

domain

user

identify the NetBIOS services listening
on the first IP address that is bound to an
adapter.

The NetBIOS name is also known as a
NetBIOS computer name.

A type of Fully-qualified Domain Name. “mypc.locallan”

An optional user name. Due to security “MARCO”

concerns, this is rarely available in the

standard implementation

Network node extended dataset for Bonjour

In addition to general-purpose properties, Fing exports for Bonjour the following JSON

structure, contained in the “bonjour” JSON key.

Property Description

hame The Bonjour name the device
publishes

model The Bonjour model the device
publishes

os The Bonjour Operating System name
the device publishes

service_list A list of bonjour services published by

the device

Example

“My Macbook”

“SCD8291221”, “Apple TV4,5”

“Linux 12.4”

“_afpovertcp._tcp.local.”
“_smb._tcp.local.”

2 fing

Network node extended dataset for UPnP

In addition to general-purpose properties, Fing exports for UPnP the following JSON

structure, contained in the “upnp” JSON key.

Property Description Example
hame The UPnP name the device publishes “My Macbook”
make The UPnP Make name the device “Samsung”
publishes
model The UPnP Model the device publishes “SCD8291221”
type_list A list of UPnP device types published “urn:Belkin:device:controllee:1”
by the device
service_list A list of UPnP services published by “urn:Belkin:service:manufacture:1”

Network node extended dataset for SNMP

the device

“urn:Belkin:service:smartsetup:1”

In addition to general-purpose properties, Fing exports for SNMP the following JSON
structure, contained in the “snmp” JSON key.

Property Description Example

hame The SNMP name the device publishes “HP”

description The SNMP description of the device “Cisco |0S Software, C3750
Software
(C3750-IPSERVICESK9-M), Version
12.2(46)SE”

location The SNMP location of device “North Corridor”

contact The SNMP contact point “admin@cisco.com”

sysoid The unique identifier of the device “1.3.6.1.4.1.9.1.516”

Network node extended dataset for DHCP

type

In addition to general-purpose properties, Fing exports for DHCP the following JSON
structure, contained in the “dhcp” JSON key.

Property

name

Description

The DHCP name the device publishes

Example

“My Macbook”

vendor

2fing

TThe DHCP vendor “Samsung”

The type of devices that Fing recognises

For each device, Fing will analyse all the details and provide the best match among its
supported types and categories. The list is reviewed and grows constantly as our machine

learning evolves.

Group

Mobile

Audio & Video

Home & Office

Home Automation

Network

Server

Engineering

Description

Generic, Mobile, Tablet, MP3 Player, eBook Reader, Smart Watch,
Wearable, Car

Media Player, Television, Game Console, Streaming Dongle,
Speaker/Amp, AV Receiver, Cable Box, Disc Player, Satellite, Audio Player,
Remote Control, Radio, Photo Camera, Photo Display, Mic, Projector

Computer, Laptop, Desktop, Printer, Fax, IP Phone, Scanner, Point of Sale,
Clock, Barcode Scanner

IP Camera, Smart Device, Smart Plug, Light, Voice Control, Thermostat,
Power System, Solar Panel, Smart Meter, HVAC, Smart Appliance, Smart
Washer, Smart Fridge, Smart Cleaner, Sleep Tech, Garage Door, Sprinkler,
Electric, Doorbell, Smart Lock, Touch Panel, Controller, Scale, Toy, Robot,
Weather Station, Health Monitor, Baby Monitor, Pet Monitor, Alarm,
Motion Detector, Smoke Detector, Water Sensor, Sensor, Fingbox,
Domotz Box

Router, Wi-Fi, Wi-Fi Extender, NAS, Modem, Switch, Gateway, Firewall,
VPN, PoE Switch, USB, Small Cell, Cloud, UPS, Network Appliance

Virtual Machine, Server, Terminal, Mail Server, File Server, Proxy Server,
Web Server, Domain Server, Communication, Database

Raspberry, Arduino, Processing, Circuit Board, RFID Tag

5. Integrate Fing using Apache Cordova

Fing’s Development Toolkit may also be used through systems that rely on
cross-platform mobile development toolkit based on Apache Cordova, such as lonic 1
and 2, PhoneGap and similar. All such platforms rely on Javascript development and
specific plugins that extend the core functionality to interact with additional frameworks.

In order for the plugin to work correctly, you shall use the default tools (npm) to install
the system, the plugin and the dependencies mentioned in this document. A typical
workflow includes the following steps:

Install the basic system

xfing

€ npm install
€ bower install
Install iOS or Android platforms
€ ionic platform add ios
€ ionic platform add android
Install the plugin
@ ionic plugin add ./fingkit
if not already present, manually add Fingkit.framework in the embedded binaries
of your Xcode project
Build for the target platforms
€ ionic build ios
€ ionic build android

In order for the plugin to work correctly, you shall use the default tools (npm) to install
the system, the plugin and the dependencies mentioned in this document. A typical
workflow includes the following steps:

lipo -remove i386 FingKit.framework/FingKit -output
FingKit.framework/FingKit

lipo -remove x86_64 FingKit.framework/FingKit -output
FingKit.framework/FingKit

Fing Device Recognition | Development Toolkit Documentation 17

